Extensions 1→N→G→Q→1 with N=S3xC22xC10 and Q=C2

Direct product G=NxQ with N=S3xC22xC10 and Q=C2
dρLabelID
S3xC23xC10240S3xC2^3xC10480,1211

Semidirect products G=N:Q with N=S3xC22xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC22xC10):1C2 = C15:C22wrC2φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):1C2480,644
(S3xC22xC10):2C2 = (C2xC10):11D12φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):2C2480,646
(S3xC22xC10):3C2 = C22xC15:D4φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10):3C2480,1118
(S3xC22xC10):4C2 = C22xC5:D12φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10):4C2480,1120
(S3xC22xC10):5C2 = C2xS3xC5:D4φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):5C2480,1123
(S3xC22xC10):6C2 = S3xC23xD5φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):6C2480,1207
(S3xC22xC10):7C2 = C5xD6:D4φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):7C2480,761
(S3xC22xC10):8C2 = C5xC23:2D6φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):8C2480,816
(S3xC22xC10):9C2 = C2xC10xD12φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10):9C2480,1152
(S3xC22xC10):10C2 = S3xD4xC10φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10):10C2480,1154
(S3xC22xC10):11C2 = C2xC10xC3:D4φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10):11C2480,1164

Non-split extensions G=N.Q with N=S3xC22xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC22xC10).1C2 = C2xD6:Dic5φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10).1C2480,614
(S3xC22xC10).2C2 = S3xC23.D5φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10).2C2480,630
(S3xC22xC10).3C2 = C22xS3xDic5φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10).3C2480,1115
(S3xC22xC10).4C2 = C5xS3xC22:C4φ: C2/C1C2 ⊆ Out S3xC22xC10120(S3xC2^2xC10).4C2480,759
(S3xC22xC10).5C2 = C10xD6:C4φ: C2/C1C2 ⊆ Out S3xC22xC10240(S3xC2^2xC10).5C2480,806
(S3xC22xC10).6C2 = S3xC22xC20φ: trivial image240(S3xC2^2xC10).6C2480,1151

׿
x
:
Z
F
o
wr
Q
<